Question		on	Expected Answers	Marks	Additional Guidance
1					
	а	i	$E = hc/\lambda = 6.63 \times 10^{-34} \times 3.0 \times 10^{8}/6.3 \times 10^{-7}$	M1	mark is for correct substitution into formula
			$= 3.16 \times 10^{-19} (J)$	A1	min of 2 sig figs; allow 3.1 for h = 6.6×10^{-34}
		ii	$1.0 \times 10^{-3}/3(.2) \times 10^{-19} (= 3.1 \times 10^{15})$	B1	accept 3 x 10 ¹⁵ ; the mark is for the
					expression
		iii	energy levels explanation: electrons have discrete energies in atom/AW	B1	QWC mark
			each photon produced by electron moving between levels	B1	good diagram can score marks
			photon energy equal to energy difference between levels	B1	allow $E_1 - E_2 = hf$ or similar
			electron loses energy/making transition in correct direction	B1	
		iv	blue light has a higher frequency/shorter wavelength than red light	B1	
			energy per photon is higher (so fewer needed to produce one mW)	B1	
	b	i	vertical arrow up approximately through X	B1	allow tolerance e.g. ± 10°
		ii	I = 0.2 ne; = 0.2 x 3.2 x 10 ¹⁵ x 1.6 x 10 ⁻¹⁹	C2	max 2 marks if forget 0.2 factor
			$= 1.0(24) \times 10^{-4}$ (A) or 0.10 mA (9.6 x 10 ⁻⁵ if using 3 x 10 ¹⁵)	A1	0.51 mA (0.48) if forget 0.2 factor
		iii	reflection/absorption at top layer; light/some photons reach bottom layer;	B1	award mark for any sensible comment; see
			photons below threshold energy/photons absorbed by electrons without		examples given
			release; recombination of ion pairs in insulating layer;		
			scattering of light/photons out of insulating layer		
			Total question 7	14	

Question		ion	Answer	Marks	Guidance
2 A A A	(a)	(i)	(atom releases energy when) electron moves from <u>high to</u> <u>low level</u> energy released is in form of a <u>photon</u> possible transitions are between $n = 3$ and $n = 1$, $n = 3$ and $n = 2$, $n = 2$ and $n = 1$	B1 B1 B1	can be illustrated on diagram by downward arrow connecting levels can be illustrated on diagram
	(a)	(ii)1	$\begin{aligned} \epsilon &= hc/\lambda \\ &= 6.63 \times 10^{-34} \times 3.0 \times 10^8 / 6.56 \times 10^{-7} \\ &= 3.0(3) \times 10^{-19} \text{ (J)} \end{aligned}$	C1 A1	choosing formula and substitution answer accept 3 x 10 ⁻¹⁹ (J) (no SF error)
	(a)	(ii)2	from $n = 3$ to $n = 2$	B1	allow between $n = 3$ and $n = 2$ allow $n = 2$ to $n = 3$ or between $n = 2$ and $n = 3$ if there is no contradiction with answer given in 7ai
	(b)	(i)	d sin $\theta = \lambda$ d sin 11.4° = 6.56 x 10 ⁻⁷ d = 6.56 x 10 ⁻⁷ /0.198 d = 3.3 x 10 ⁻⁶ (m)	C1 C1 A1	choosing formula and substitution manipulation and sin 11.4° = 0.198
	(b)	(i)2	$1/d = 3 \times 10^5 \text{ m}^{-1} = 300 \text{ mm}^{-1}$	A1	ecf b(i)1; allow 301 or 302 as data given to 3 sig figs
	(b)	(ii)	2 rays, one either side of normal to grating at about 8°, say	B1	accept any sensible angle
			Total	11	

Question		on	Expected Answers	М	Additional Guidance
3					
	а	i	vertical arrow upwards from ground state to zero level or above	B1	
		ii	21.8 x 10 ⁻¹⁹ (J)	B1	no ecf from (i); ignore sign
	b	i	$E = hc/\lambda = 6.63 \times 10^{-34} \times 3.0 \times 10^{8}/4.9 \times 10^{-7}$	M1	accept use of 6.6 instead of 6.63 which can
			$= 4.06 \times 10^{-19} (J)$ or $4.1 \times 10^{-19} (J)$	A1	round down answer to 4.0(4)
		ii	vertical arrow downwards between $n = 4$ to $n = 2$ levels	B1	
	С		some photons will be <u>absorbed</u>	B1	not hits
			hydrogen atoms become excited	B1	allow electron moves up energy levels
			(excited) hydrogen atoms re-emit photons	B1	
			the photon energy is equal to the transition $n = 1$ to $n = 3$	B2	NB full marks = lines 1 + 4 or 1 + 2 + 3
			Total question 8	8	

Question		on	Expected Answers	Marks	Additional Guidance
4					
	а	i	paths spread out after passing through a gap or around an obstacle/AW	B1	
		ii	wavelength of electrons	M1	allow electrons behave as waves/AW
			must be comparable/of the order of magnitude of the atomic spacing	A1	allow must be about 10 ⁻¹⁰ m
	b		$\lambda = h/mv$	C1	mark for selecting formula
			$v = 6.6(3) \times 10^{-34} / 9.1(1) \times 10^{-31} \times 1.2 \times 10^{-10}$	M1	correct manipulation and subs. shown
			$= 6.0 \text{ or } 6.1 \times 10^6 \text{ (m s}^{-1})$	A1	give all 3 marks for answers to 3 figs or
					more: i.e. 6.04, 6.06 or 6.07
	С	i	$eV = \frac{1}{2}mv^2$	C1	mark for algebraic equation
			$V = mv^2/2e = 9.1 \times 10^{-31} \times (6.0 \times 10^6)^2/2 \times 1.6 \times 10^{-19}$	C1	mark for correct substitution
			$= 1.0(2) \times 10^2 (V)$	A1	give 1 mark max for k.e. = $1.6(4) \times 10^{-17}$ J
					using 6.1 gives 104 (V)
		ii	electrons should be repelled by cathode and/or attracted by anode or		award mark if answer indicates this idea
			they will be attracted back to the cathode/slowed down if cathode positive	B1	
			Total question 8	10	