

Question			Answer	Marks	Guidance
$\begin{aligned} & 2 \\ & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	(a)	(i)	(atom releases energy when) electron moves from high to low level energy released is in form of a photon possible transitions are between $\mathrm{n}=3$ and $\mathrm{n}=1, \mathrm{n}=3$ and $\mathrm{n}=2, \mathrm{n}=2$ and $\mathrm{n}=1$	$\begin{aligned} & \mathrm{B} 1 \\ & \\ & \text { B1 } \\ & \mathrm{B} 1 \end{aligned}$	can be illustrated on diagram by downward arrow connecting levels can be illustrated on diagram
	(a)	(ii)1	$\begin{aligned} \varepsilon & =\mathrm{hc} / \lambda \\ & =6.63 \times 10^{-34} \times 3.0 \times 10^{8} / 6.56 \times 10^{-7} \\ & =3.0(3) \times 10^{-19}(\mathrm{~J}) \end{aligned}$	$\begin{aligned} & \text { C1 } \\ & \text { A1 } \end{aligned}$	choosing formula and substitution answer accept $3 \times 10^{-19}(\mathrm{~J})$ (no SF error)
	(a)	(ii)2	from $\mathrm{n}=3$ to $\mathrm{n}=2$	B1	allow between $\mathrm{n}=3$ and $\mathrm{n}=2$ allow $\mathrm{n}=2$ to $\mathrm{n}=3$ or between $\mathrm{n}=2$ and $\mathrm{n}=3$ if there is no contradiction with answer given in 7ai
	(b)	(i)	$\begin{aligned} & d \sin \theta=\lambda \quad d \sin 11.4^{0}=6.56 \times 10^{-7} \\ & d=6.56 \times 10^{-7} / 0.198 \\ & d=3.3 \times 10^{-6}(\mathrm{~m}) \end{aligned}$	$\begin{aligned} & \text { C1 } \\ & \text { C1 } \\ & \text { A1 } \end{aligned}$	choosing formula and substitution manipulation and $\sin 11.4^{\circ}=0.198$
	(b)	(i)2	$1 / \mathrm{d}=3 \times 10^{5} \mathrm{~m}^{-1}=300 \mathrm{~mm}^{-1}$	A1	ecf b(i)1; allow 301 or 302 as data given to 3 sig figs
	(b)	(ii)	2 rays, one either side of normal to grating at about 8°, say	B1	accept any sensible angle
			Total	11	

Question			Expected Answers	M	Additional Guidance
3					
	a	i	vertical arrow upwards from ground state to zero level or above	B1	
		ii	$21.8 \times 10^{-19}(\mathrm{~J})$	B1	no ecf from (i); ignore sign
	b	i	$\begin{aligned} \mathrm{E} & =\mathrm{hc} / \lambda=6.63 \times 10^{-34} \times 3.0 \times 10^{8} / 4.9 \times 10^{-7} \\ & =4.06 \times 10^{-19}(\mathrm{~J}) \text { or } 4.1 \times 10^{-19}(\mathrm{~J}) \end{aligned}$	$\begin{array}{\|l\|} \hline \text { M1 } \\ \text { A1 } \\ \hline \end{array}$	accept use of 6.6 instead of 6.63 which can round down answer to 4.0(4)
		ii	vertical arrow downwards between $\mathrm{n}=4$ to $\mathrm{n}=2$ levels	B1	
	c		some photons will be absorbed hydrogen atoms become excited (excited) hydrogen atoms re-emit photons the photon energy is equal to the transition $\underline{n=1}$ to $n=3$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { B1 } \\ & \text { B2 } \end{aligned}$	not hits allow electron moves up energy levels $\text { NB full marks }=\text { lines } 1+4 \text { or } 1+2+3$
			Total question 8	8	

Question			Expected Answers	Marks	Additional Guidance
4					
	a	i	paths spread out after passing through a gap or around an obstacle/AW	B1	
		ii	wavelength of electrons must be comparable/of the order of magnitude of the atomic spacing	$\begin{array}{\|l\|} \hline \text { M1 } \\ \text { A1 } \end{array}$	allow electrons behave as waves/AW allow must be about $10^{-10} \mathrm{~m}$
	b		$\begin{aligned} & \Lambda=\mathrm{h} / \mathrm{mv} \\ & \mathrm{v}=6.6(3) \times 10^{-34} / 9.1(1) \times 10^{-31} \times 1.2 \times 10^{-10} \\ & =6.0 \text { or } 6.1 \times 10^{6}\left(\mathrm{~m} \mathrm{~s}^{-1}\right) \end{aligned}$	$\begin{aligned} & \text { C1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	mark for selecting formula correct manipulation and subs. shown give all 3 marks for answers to 3 figs or more: i.e. 6.04, 6.06 or 6.07
	c	i	$\begin{aligned} & \mathrm{eV}=1 / 2 \mathrm{mv}^{2} \\ & \mathrm{~V}=\mathrm{mv}^{2} / 2 \mathrm{e}=9.1 \times 10^{-31} \times\left(6.0 \times 10^{6}\right)^{2} / 2 \times 1.6 \times 10^{-19} \\ & =1.0(2) \times 10^{2}(\mathrm{~V}) \end{aligned}$	$\begin{aligned} & \hline \text { C1 } \\ & \text { C1 } \\ & \text { A1 } \end{aligned}$	mark for algebraic equation mark for correct substitution give 1 mark max for k.e. $=1.6(4) \times 10^{-17} \mathrm{~J}$ using 6.1 gives 104 (V)
		ii	electrons should be repelled by cathode and/or attracted by anode or they will be attracted back to the cathode/slowed down if cathode positive	B1	award mark if answer indicates this idea
			Total question 8	10	

